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Abstract
Large Language Models (LLMs) are increasingly being adapted to

interpret the physical world through sensor data. However, feed-

ing raw sensor data (e.g., eye-tracking) into these models as text

prompts can lead to excessive token overhead and degraded model

performance. This study proposes an alternative approach: trans-

forming eye-tracking data into visual representations that serve as

prompts for Multimodal Large Language Models (MLLMs). Specif-

ically, we explore three types of visualizations—time-series plot,

scanpath, and heatmap—and evaluate their effectiveness on a six-

class eye-tracking classification task under zero-shot and one-shot

conditions. Our results show that visual prompts not only reduce

input tokens by over 85% but also significantly improve accuracy.

The heatmap’s one-shot accuracy of 73.9% was substantially higher

than the 37.8% achieved with raw text. These findings highlight

how visual abstraction facilitates the integration of trajectory-based

sensor data into MLLM-driven reasoning pipelines.

CCS Concepts
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1 Introduction
The capabilities of Large Language Models (LLMs) are evolving

to comprehend real-world phenomena, including human behavior

[18]. Recent studies used sensor data collected via EEG, accelerom-

eter, 3-D LiDAR, and ECG as input for LLMs [3, 7–9, 19–21]. The

primary goal of these studies was to explore how LLMs can perform

classification, reasoning, data processing, and prediction tasks us-

ing sensor data. For example, Xu et al. [18] demonstrated that LLMs

can discern user motion and detect heartbeat peaks without task-

specific feature engineering. Based on this, Ji et al. [8] evaluated

GPT-4 on a human activity recognition task in a zero-shot setting.

Furthermore, Xue et al. [19] and Gruver et al. [7] showed that LLMs

can process time-series data for forecasting tasks, highlighting their

potential for sequence modeling.

Sensor data is commonly integrated into LLMs by representing

it as raw text in input prompts [10]. However, this approach can

lead to reduced model performance when processing long contexts,

as well as high token consumption, resulting in high computational

and financial costs [11, 22]. In response to these challenges, Yoon et

al. [22] transformed sensor data into chart images and used them as

visual prompts for Multimodal Large Language Models (MLLMs).

This approach effectively condensed long data sequences into a

single image, reducing token overhead and enhancing the accu-

racy of classification tasks. In previous studies, sensor data such as

accelerometers, ECG, EMG, respiration, and audio have been visu-

alized using raw signal plots or spectrograms as inputs for MLLMs

[4, 22]. While these visualizations are tested on time-series data

that represents signal amplitude over time or frequency compo-

nents, spatially grounded data such as trajectory or tracking data

have not been explored in this context. For instance, eye-tracking

data contains two-dimensional spatial information in addition to

temporal dynamics, which makes it fundamentally different from

time-series data. This work explores the viability and implications

of representing eye-tracking data as visual inputs for MLLMs.

In data visualization, eye-tracking data is often represented using

scanpaths and heatmaps [1, 15]. Scanpaths illustrate the sequence of

gaze movements as thin lines, conveying both spatial positions and

temporal progression. In contrast, heatmaps provide a color-coded

overview of attention distribution, emphasizing spatial density

while omitting temporal information. Alongside these methods,

this study also incorporates a time-series line plot, which directly

depicts gaze coordinates against a time axis to highlight temporal
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Figure 1: Three visualization types—(A) time-series plot,
(B) scanpath, and (C) heatmap—are used to represent eye-
tracking data across six activity categories (shown in rows).

dynamics. Accordingly, this study investigates (1) whether visual

prompts can serve as a more efficient and effective alternative to

raw text, and (2) how the performance of different representations

varies across behavioral categories, and what this reveals about

MLLM’s visual interpretation process.

Our results are as follows. First, visual prompts outperform text-

based raw data in both accuracy and token efficiency. Second, the

heatmap demonstrates strong overall performance, whereas the

effectiveness of each visualization varies depending on the specific

activity. It highlights the importance of choosing an appropriate

visual encoding thatmatches the specific nature of the activity being

analyzed, rather than relying on a one-size-fits-all visualization.

Our contribution extends the visual prompting paradigm to spatio-

temporal eye-tracking data and offers a comprehensive analysis

that reveals how the effectiveness of visualization methods varies

by activity categories.

2 Methodology
2.1 Data Preparation
This study utilized GazeBase dataset [6], a comprehensive longitu-

dinal dataset consisting of 12,334 monocular eye movement record-

ings from 322 participants. The eye-tracking data were recorded at

1ms intervals, with gaze positions measured in degrees of visual

angle (dva). Each subject demonstrated six distinct eye-tracking

Figure 2: Prompt structure used in experiments. (A) Instruc-
tion prompt (B) Explanation of six categories (C) Example vi-
sual prompts (only for one-shot setting) (D) Question prompt
with target data.

activities: Horizontal Saccade (HSS), Video Viewing (VID)1, Fixation
(FXS), Random Saccade (RAN ), Reading (TEX ), and Playing Balura

Game (BLG). The dataset was collected longitudinally over nine

rounds, with participant numbers decreasing from 322 to 14 in the

final (9th) round. Based on our investigation, recordings from the

later rounds tend to be much cleaner. We therefore sampled two

subsets—a one-shot example and a test set—for the classification

experiment accordingly. Specifically, the one-shot example consists
of eye-tracking data of a single randomly selected subject from the

final round. In contrast, the test set comprises 30 randomly selected

participants from the first round to ensure a robust evaluation of the

model’s generalization. The selected participants are demographi-

cally balanced (15 females, 15 males; Mage = 21.87, SDage = 4.08)

and reflect the overall composition of the original dataset.

Tomaintain a consistent input length across samples, each record-

ing was trimmed to a 10-second window and then converted into

four commonly used representations[2, 16]: raw text data, time-

series plot, scanpath, and heatmap. All numeric values in the raw

text data were rounded to two decimal places to maintain con-

ciseness and avoid unnecessary precision. Additionally, the chart

images were uniformly resized to 1229 × 768 pixels in accordance

with OpenAI’s API policy.

1
Although the original dataset contains two video viewing activities, we used the first

one only, to ensure distinct activity categories and avoid redundancy.
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Figure 3: Accuracy comparison between zero-shot and one-
shot settings across various data representations, showing
(A) overall and (B) per-activity categories.

2.2 Experimental Design
To compare the effectiveness of the four data representations, we

performed a standard classification experiment targeting six pre-

defined eye-tracking activities. The experiments were carried out

using GPT-4o-2024-11-20 [13]. To better understand the process of

answering, we designed a structured output [14] using the Chain-

of-Thought method [17] to generate step-by-step reasoning. In

order to examine the model’s ability to generalize to new tasks

and the performance gain achievable with minimal supervision, we

created both zero-shot and one-shot prompts. The prompts consist

of four sections, as shown in Figure 2. First, the Instruction sec-

tion provides the model with context and guidance, followed by

the Activity Description that outlines the characteristics of the six

classes of eye-tracking activity. Only the one-shot prompt has the

Examples section that provides six example representations. Lastly,

both prompts conclude with the Question section that presents the

target instance to be classified. To maintain consistency between

modalities, both the visual and raw text inputs were uniformly

labeled as “data.” Furthermore, to mitigate ordering bias [23], we

rotated the order of descriptions and examples for each activity.

3 Results
Text vs. Visual Representations. As shown in Figure 3(A), all

visual representations—time series plot, scanpath, and heatmap—

consistently outperformed the raw text input, except for VID activ-

ity, where no representations achieved over 0.4 accuracy. In general,

the heatmap achieved the highest accuracy in both zero-shot and

one-shot settings, reaching 0.561 and 0.739, respectively. However,

BLG was an exceptional case where the one-shot scanpath achieved

the higher accuracy, as shown in Figure 3(B).

Zero-shot vs. One-shot. One-shot prompting generally resulted

in higher accuracy. For instance, the time series plot, which achieved

0.311 in the zero-shot setting, doubled its accuracy to 0.622 in the

one-shot condition. However, for scanpath visualizations, one-shot

prompting did not outperform zero-shot for three activities (HSS,
FXS, and RAN ), indicating that the added example did not reliably

enhance classification accuracy.

Activity Categories. An analysis of performance by task cate-

gory, as detailed in Figure 3(B), reveals several key patterns. Overall,

the heatmap representation yielded the highest accuracy for tasks

such as HSS, FXS, and RAN in both settings. Although one-shot

learning generally improved accuracy, exceptions were observed.

Specifically, performance decreased for HSS with the time-series

plot and scanpath, for FXS and RAN with the scanpath, and for BLG
with the raw text and heatmap. Conversely, classifying VID proved

challenging under all conditions. And for BLG in the one-shot set-

ting, the accuracy of the scanpath (0.60) and the time-series plot

(0.40) was higher than the precision of the heatmap (0.33).

The confusion matrices in Figure 4 illustrate specific misclassi-

fication patterns. In the zero-shot condition, the time-series plot

commonly misclassified other activities as HSS; for instance, 27
TEX and 20 RAN cases. For the one-shot condition, a common error

across all visual methods was incorrectly classifying VID as BLG
cases, which occurred 13 times for time-series, 13 for scanpath, and

10 for heatmap (N=30 for each activity). A mutual misclassification

pattern was also observed between BLG and RAN. BLG was often

mislabeled as RAN, a tendency prominent in the zero-shot setting

(e.g., 18 out of 30 for both the time-series plot and the heatmap)

but still present in the one-shot condition (e.g., 15 out of 30 for the

time-series plot and 19 out of 30 for the heatmap). Conversely, RAN
was also frequently misclassified as BLG, especially in the one-shot

scanpath results (9 out of 30 cases).

Input Token Efficiency. Token counts for text inputs were cal-

culated by using the cl100k_base encoding scheme [12]. Each

visualization image was automatically split into six 512×512 tiles,

with each image using 1,105 tokens
2
. As a result, the use of visual

representations was confirmed to be substantially more efficient

in token consumption than using raw text input. In the zero-shot

condition, raw text input required an average of 10,148 tokens,

whereas all three visual prompts consistently used only 1,527 to-

kens. Similarly, in the one-shot condition, raw text input consumed

an average of 69,928 tokens, while the visual prompts required

8,294 tokens. By using visual prompts, token consumption in this

experiment was reduced to 15.05% and 11.96% of the raw text in

the zero-shot and one-shot settings, respectively.

4 Discussions
Efficacy of Turning Eye-Tracking Data into Visual Prompts.

Our findings confirm that for eye-tracking data, visual prompting

is an effective strategy for enhancing classification accuracy while

substantially reducing token usage, extending prior work into the

spatio-temporal domain of gaze analysis. We evaluated multiple

visualization techniques and discovered that the heatmap repre-

sentation consistently yielded the highest accuracy. This result is

noteworthy because heatmaps lack explicit temporal information.

This suggests that for gaze-based tasks, a concise summary of spa-

tial attention can be a more powerful feature for an MLLM than a

verbose sequence of raw gaze coordinates.

2
Based on GPT-4o’s calculation: 85 base tokens + 170 tokens per tile.
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Figure 4: Confusion matrices of four data representation types in (A) zero-shot setting and (B) one-shot setting.

Aligning Visualizations with Behavioral Characteristics. A
more detailed observation is that the optimal visualization method

varies with the nature of the behavioral categories. For instance, in

activities that create spatially predictable and dense fixation zones,

such as the point-to-point movements in HSS, RAN, and TEX, or
the single focus point in FXS, the heatmap’s ability to summarize

these high-density areas proved superior.

However, for BLG, both the time-series plot and scanpath repre-

sentations achieved higher accuracy than the heatmap in the one-

shot condition. This activity involves tracking dynamically moving

objects, a process where temporal and sequential information is

critical. The MLLM’s Chain-of-Thought reasoning supported this,

noting that the one-shot scanpath revealed "Observed the pattern of
dense and intricate movements without a strongly defined pattern." In
contrast, all visual methods performed poorly on VID, frequently
misclassifying it as RAN and BLG. One of the reasoning steps for
zero-shot time-series states: "From the image of the eye-tracking
data, we observe multiple saccades with significant movement in both
X and Y axes." The free-viewing nature of VID lacks a distinct gaze

signature, making it difficult to classify without additional context,

while the model can capture the shared high-level feature of dy-

namic movement presented both in VID and BLG. This suggests that
for less structured activities, gaze data alone may be insufficient for

MLLMs to distinguish the subtle differences.

5 Limitation and Future Work
Enhancing Visual Representations. The visualizations used

in this study were foundational. The scanpath, for instance, illus-

trates the connections between gaze points but does not explicitly

represent the temporal order of movements or the duration of fixa-

tions. Techniques such as varying marker sizes [1] to indicate dwell

time were not incorporated, limiting the information available on

fixation points. Similarly, our heatmaps were generated without

being overlaid on a specific stimulus, which is a common practice in

user interface analysis [5]. However, given the strong performance

of the informationally simple heatmap, this future work should also

systematically investigate the trade-off between information den-

sity and abstractive clarity. Determining the optimal level of detail

that aids MLLM reasoning remains a topic for future exploration.

Expanding the Scope of Eye Tracking Tasks. This study fo-

cused on an activity classification task based on gaze data, which

is not the only problem addressed with eye-tracking. There is an

opportunity to investigate whether visual prompting can be effec-

tive for other common eye-tracking analyses. Future research could

explore the application of this method to tasks such as saliency

prediction, user identification, or cognitive load estimation from

gaze patterns. Moreover, as MLLMs can interpret natural language

instructions, their integration into cyber-physical systems could

facilitate more open-ended task execution and complex reasoning,

unconstrained by predefined analytical scopes.

Generalization to Other Trajectory Data. The methodology

of representing tracking data as visual inputs for MLLMs holds

promise beyond eye-tracking. This approach can be generalized

to a wide variety of trajectory tracking data. For example, a user’s

physical movement traces from wearable sensors, the navigation

paths of robots or drones, or GPS-based vehicle logs could be simi-

larly visualized. Such data could be rendered as two-dimensional or

three-dimensional path plots, which are spatially grounded. This

could unlock advanced capabilities such as path forecasting, anom-

aly detection, or generating explanations for observed movements.

Ultimately, this approach could significantly advance how MLLMs

process and reason about dynamic events from sensor data, offering

a new method for analyzing real-world’s physical behaviors.

6 Conclusion
This study investigated the effectiveness of using image represen-

tations of eye-tracking data as visual prompts for MLLMs. Our

experiments demonstrated that visualization methods, particularly

heatmaps, significantly outperform raw text inputs in a classifi-

cation job setting, achieving higher accuracy while dramatically

reducing token consumption. This work confirms that transforming

complex sensor data into an appropriate visual format is a viable

and efficient strategy for enabling MLLMs to interpret nuanced hu-

man behaviors from trajectory data. Furthermore, our finding that

different visualizations excel at different tasks suggests that future

research should focus on tailoring visual representations to specific

analytical goals to fully leverage the capabilities of reasoning and

understanding real-world context of MLLMs.
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